GM Free Cymru

Crucial Paper 21:
Debate on GMOs Health Risks after Statistical Findings in Regulatory Tests

by Joël Spiroux de Vendômois, Dominique Cellier, Christian Vélot, Emilie Clair, Robin Mesnage, and Gilles-Eric Séralini

International Journal of Biological Sciences 2010; 6(6):590-598 (Communication)

Abstract We summarize the major points of international debate on health risk studies for the main commercialized edible GMOs. These GMOs are soy, maize and oilseed rape designed to contain new pesticide residues since they have been modified to be herbicide-tolerant (mostly to Roundup) or to produce mutated Bt toxins. The debated alimentary chronic risks may come from unpredictable insertional mutagenesis effects, metabolic effects, or from the new pesticide residues. The most detailed regulatory tests on the GMOs are three-month long feeding trials of laboratory rats, which are biochemically assessed. The tests are not compulsory, and are not independently conducted. The test data and the corresponding results are kept in secret by the companies. Our previous analyses of regulatory raw data at these levels, taking the representative examples of three GM maize NK 603, MON 810, and MON 863 led us to conclude that hepatorenal toxicities were possible, and that longer testing was necessary. Our study was criti ci zed by t he company developing the GMOs in question and the regulatory bodies, mainly on the divergent biological interpretations of statistically significant biochemical and physiological effects. We present the scientific reasons for the crucially different biological interpretations and also highlight the shortcomings in the experimental protocols designed by the company. The debate implies an enormous responsibility towards public health and is essential due to nonexistent traceability or epidemiological studies in the GMO-producing countries.

Extract: Conclusions and perspectives

Controversy on biological interpretations is a usual way of advancement in science. It would however have been beneficial for the acceptance of biotechnologies by the public at large, to close this scientific debate by longer, more detailed, and transparent toxicological tests on GMOs, and in particular twenty years ago when the most widely grown GMOs were still experimental.

We wish to reassert that our work does not claim to demonstrate the chronic toxicity of the GMOs in question, especially since it is based on the data originating from insufficient tests that were accepted by regulatory authorities and Monsanto et al., a fact for which we are not in any way responsible. For the regulatory authorities, as well as Monsanto et al, these tests prove chronic innocuousness for mammalian and human public health. And they claim it is not essential to demonstrate the GMOs innocuousness. This again raises the same issues and consequences. We have revealed the inefficiency both of these tests and of their statistical analysis and biological interpretations, for the various reasons detailed above.

However, some of the in vivo 90-day tests are not performed any longer today to get worldwide commercial authorizations, especially for GMO with “stacked events” (i.e., producing one or several insecticides and tolerating one or two herbicides), and this is even more seriously inadequate since the so-called “cocktail effects” are not taken into consideration.

The same controversy took place (February 2010) in India, in relation to the authorization process for a transgenic eggplant that produces a new Bt insecticide. This authorization was based on three-month tests on three mammals and other animals for shorter times, which presented significant biological effects after this GM consumption [10, 25]. The same arguments were used in the debate in India. But in this case, the government decided to take the time to study chronic health effects, following our expertise, and therefore to implement a moratorium [26].

In the present case, we wish to underline that the commercial GMOs in question contain pesticide residues, some of which have been demonstrated as human cellular endocrine disruptors at levels around 1000 times below their presence in some GM feed [27]. Such Roundup residues are present in more than 80% of edible cultivated GMOs. This does not exclude other possible effects.

As a conclusion, we call for the promotion of transparent, independent and reproducible health studies for new commercial products, the dissemination of which implies consequences on a large scale. Lifetime studies for laboratory animals consuming GMOs must be performed, by contrast to what is done today, like the two-year long tests on rats for some pesticides or some drugs. Such tests could be associated to transgenerational, reproductive or endocrine research studies. And moreover, shortcomings in experimental designs may raise major questions on other chemical authorizations.